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Problem definition

o
Attribution

Problem definition

m aim: classify family and/or actor(s) behind an attack (attribution)
m complex features: infrastructure, intrusion, infection method, events, etc.
m simple feature: the binary file — PE executable’s static call graph

m goal: malware family detection with high number of families
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Problem definition
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Literature

Survey of previous researches

Figure 1: ~ 100 research papers categorized according to extracted features and

algorithms. Most frequent: API/sys calls.
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Problem definition
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Static call graph — IDA Pro

What is a static call graph of an .exe?

m (dynamic = execution in sandbox)
m static = disassembler

m function execution sequence = call graph

m node = function (black — local, blue — statically linked lib., purple — DLL)

m link = function call
® why not blacklist the hash of the graph?

® metamorphic viruses: code generations

m common libraries, functions
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Problem definition
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Static call graph — IDA Pro

Generating the static call graph

WinMain@16

GenCallGdlI: call graph without instructions  GenFuncGdl: execution flowchart

Figure 2: IDA Pro disassembler
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Problem definition
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Static call graph — IDA Pro

Generating the static call graph Il

tdefender

Malware classification based on graph convolutional neural networks and static call graph features



Problem definition
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Static call graph — IDA Pro

Static call graph of 2 variations of a metamorphic virus

Figure 4: Static call graph of metamorphic generations (Gephi, Force Atlas)
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Static call graph — IDA Pro

How to extract info from this graph? |

m clustering problem: signatures (Mester and Bodé 2021)

Figure 5: 600 malicious files, having 24 000 signatures
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Problem definition
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Static call graph — IDA Pro

How to extract info from this graph? Il

m classification problem: neural networks
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Figure 6: Malware family classification with GCN
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Graph convolutional neural networks
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Graph convolutional neural networks

m CNN - convolutional operator
m GCN — specialized CNN for graph input type

m spatial: neighbourhood info used for embedding

m spectral: eigenvectors of graph Laplacian

m Laplacian smoothing: averaging the points in the

neighbourhood (Kipf and Welling 2016) — nodes in

. . Figure 7: Laplacian smoothing:
same cluster, similar vector representaion

averaging the neighbourhood

information
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Graph convolutional neural networks

oe

propagation rule:
H+D) — & (AH(/)WU)) (1)
m H - embedded data representation, H° = X (input feature matrix)
m A — normalized adj. matrix
m W — weights of neural network

m o — activation function (e.g. ReLU)
B Uusecases:

m node classification
m graph classification

m link classification, edge prediction
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Graph convolutional neural networks
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Literature

Literature

m Android: (Cai et al. 2021) — first on Android GCN: app’s runtime behaviour -
function calls - embedding - SVM ; (John, Thomas, and Emmanuel 2020)

m dynamic analysis (Oliveira and Sassi 2021) — not scalable

m static API calls, graph, GCN (Dam and Touili 2017; Hong, S. Park, et al.
2018; Phan et al. 2018; Hong, S.-J. Park, et al. 2019)

m node / graph embedding (Jiang, Turki, and Wang 2018; Hong, S.-J. Park,
et al. 2019; J. Yan, G. Yan, and Jin 2019)
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Graph convolutional neural networks
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Literature

What do we do differently?

m size of dataset in literature vs. our dataset (D)

# of classes in literature vs. # of families in D

m node-level features: LSH on function’s instruction n-gram distribution

(Mester and Bodé 2021)

223 families, 8620 samples

m 6 — 12 families in (Hong, S. Park, et al. 2018; Hong, S.-J. Park, et al. 2019;
Tang and Qian 2019; J. Yan, G. Yan, and Jin 2019)
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Graph convolutional neural networks
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Scientific approach

Summary

m scan with call graph: IDA Pro, GenCallGdl, GenFuncGdl (A)

m obtain LSH codewords of subroutines — random projection method (X)
m training the GCN on A

m training the GCN on A and X

m training the GCN on A and (J. Yan, G. Yan, and Jin 2019)

m training a MLP on X

m training a MLP on (J. Yan, G. Yan, and Jin 2019)
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Graph convolutional neural networks
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Scientific approach

ModuleList (

(0): GCNConv(8, 128)
(1): ReLUQ)

(2): Dropout(p=0.5)
(3): GCNConv(128, 128)
(4): ReLUQ)

(5) : Dropout(p=0.5)
(6): GCNConv (128, 128)
(7): ReLUQ)

(8): Dropout(p=0.5)
(9): GCNConv (128, 128)
(10) : Dropout (p=0.5)

)

(f): Linear(in_features=128, out_features=223, bias=True))

Figure 8: GCN model used in the experiments
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Graph convolutional neural networks
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Scientific approach

(stack): Sequential(
(0): Linear(in_features=8, out_features=128, bias=True)
(1): ReLUQ)
(2): Dropout(p=0.5)
(3): Linear(in_features=128, out_features=128, bias=True)
(4): ReLUQ)
(5) : Dropout(p=0.5)

(6): Linear(in_features=128, out_features=223, bias=True)

Figure 9: MLP model used for learning only on node-level features
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Graph convolutional neural networks
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Experiments and Results

Tech stack + hardware

m Python3, IDA Pro 6, GraphViz, PyTorch 1.10.0, Pytorch Geometric (pyg)
2.0.2, Tensorboard

m Intel Xeon E5-2697A v4, 64 GB RAM, GeForce RTX 2080 Ti

m sincere thanks to Bitdefender
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Graph convolutional neural networks
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Experiments and Results

Dataset

m 15375 samples from 967 families

m after filtering: 8620 samples from 223
m call graph nodes: max. 76k, avg. 1k
m call graph links: max 245k, avg. 3.4k
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Figure 10: Distribution of family sizes within the dataset of 15k samples.
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Graph convolutional neural networks
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Experiments and Results

Hyperparameters

m number of hidden layers: 1 — 4,
m size of hidden GCN layers: 64, 128 or 256,
m dropout probability: 0.2, 0.4 or 0.5,

m dropout only after the last GCN layer or after each of them
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Graph convolutional neural networks
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Experiments and Results

Results

F1 score and size of each family

F1 score and size of each family
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a. GCN model on CG, with LSH codes

b. GCN model on CFG - literature

Figure 11: F;i-score of each class, plotted against the size of the family. The input of
GCN is CG and CFG (J. Yan, G. Yan, and Jin 2019), respectively.
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Graph convolutional neural networks
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Experiments and Results
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a. GCN model using LSH codewords. b.

c. MLP model using LSH codewords. d.

e. GCN model using only topology.

GCN model, (J. Yan, G. Yan, and Jin 2019)

MLP model, (J. Yan, G. Yan, and Jin 2019)

Figure 12: Fi-score of the GCN and MLP models using various features.
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Graph convolutional neural networks
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Experiments and Results

Evaluation metrics

m F; — harmonic mean of precision and recall

m micro (considers label imbalance) and macro-averaged F;

Model Micro-F;  Macro-F;
GCN model with LSH codes 0.381 0.189
GCN model with features of (J. Yan, G. Yan, and Jin 2019) 0.614 0.392
GCN model without node-level features 0.204 0.003
MLP model with LSH codes 0.313 0.050
MLP model with features of (J. Yan, G. Yan, and Jin 2019) 0.242 0.020

Table 1: Fi-scores of each model on the test dataset.
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Conclusions & Future work
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Conclusions

m task: malware — family classification

malware feature: static call graph (node = function)

feature extraction: LSH codewords of instruction n-grams

models: GCN and MLP

best model: call graph topology + node-level features

Attila Mester and Zaldn Bodd Babes—Bolyai University of Cluj-Napoca | Bitdefender

Malware clas: n based on graph convolutional neural networks and st: all graph features



Conclusions & Future work
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Future work

m subroutine feature selection

® mnemonic histogram options

m simple instruction statistics
m GCN models, parameter options

m other disassembler tools, e.g. Radare2
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