Towards a malware family classification model using static call graph instruction visualization

Attila Mester, Zalán Bodó, Vinod P., Mauro Conti

{attila.mester, zalan.bodo}@ubbcluj.ro {vinod.puthuvath, mauro.conti}@unipd.it

Babeș–Bolyai University, Romania University of Padua, Italy

20th November 2024

Attila Mester, Zalán Bodó, Vinod P., Mauro Conti

Towards a malware family classification model using static call graph instruction visualization

Babes–Bolyai University | University of Padua

Content

- 1. Problem definition
 - Attribution

Literature

Generating the static call graph

Our previous and current work

- 2. Malware Image
- 3. Training CNNs
- 4. Comparing with EMBER
- 5. Packers and families
- 6. Conclusions

Attila Mester, Zalán Bodó, Vinod P., Mauro Conti

Towards a malware family classification model using static call graph instruction visualization

Problem definition: attribution

- aim: classify family and/or actor(s) behind an attack (attribution)
- motivation: improved threat intelligence, faster incidence response, tailored defense strategies
- simple feature: the binary **PE** file
 - byte sequences; distribution; hashes
 - system calls e.g. GetFileInformationByHandle
 - executable's static call graph
- goal: malware family/author detection using static call graph

Babes-Bolyai University | University of Padua

Malware analysis - the textbook approach

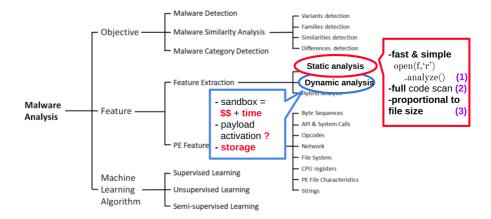


Figure 1: Malware analysis – taxonomy according to (Ucci, Aniello, and Baldoni 2018).

Babes-Bolvai University | University of Padua

Attila Mester, Zalán Bodó, Vinod P., Mauro Conti

What is a static call graph of an .exe?

- static = obtained by disassembly (vs. dynamic = obtained by sandbox)
- function execution sequence = call graph
 - node = function (DLL / subroutine)
 - link = function call
- generation method: Radare2 disassembler tool

Babes-Bolyai University | University of Padua

What is a static call graph of an .exe?

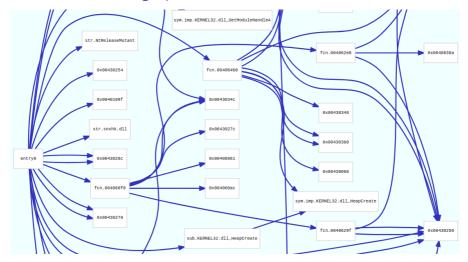


Figure 2: Sample call graph obtained by Radare2.

Attila Mester, Zalán Bodó, Vinod P., Mauro Conti

Babeș-Bolyai University | University of Padua

э

▲□▶ ▲圖▶ ▲国▶ ▲国▶

How to use this graph?

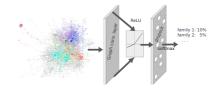
clustering signatures (Mester and Bodó 2021)

Babes-Bolyai University | University of Padua

(日) (四) (日) (日) (日)

Attila Mester, Zalán Bodó, Vinod P., Mauro Conti

How to use this graph?



clustering signatures (Mester and Bodó 2021)

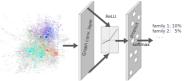
GCN (Mester and Bodó 2022)

Attila Mester, Zalán Bodó, Vinod P., Mauro Conti

Towards a malware family classification model using static call graph instruction visualization

Babeș-Bolyai University | University of Padua

How to use this graph?



clustering signatures (Mester and Bodó 2021)

GCN (Mester and Bodó 2022) CNN

current work

Attila Mester, Zalán Bodó, Vinod P., Mauro Conti

Towards a malware family classification model using static call graph instruction visualization

Babes-Bolyai University | University of Padua

イロト イポト イヨト イヨ

Motivation

- helpful: wide range of tools: CNN, visualization, patterns
 - DFS traversal instruction patters image patterns
- classification based on image derived from instructions
- aiming method stability: altering instructions is not trivial

Towards a malware family classification model using static call graph instruction visualization

<ロト < 同ト < ヨト <

Literature

- first work in 2011: Mallmg dataset (Nataraj et al. 2011)
- working with grayscale images (Cui et al. 2018; Kalash et al. 2018)
- SimHash images: locality-sensitive binary hash generated by SimHash (Charikar 2002) for the opcode sequences, converted into binary image (Ni, Qian, and Zhang 2018)
- Markov images: visualizing transition probabilities between bytes, opcodes (Yuan et al. 2020; Deng et al. 2023)

Datasets

Dataset		Published	Binaries	Families	Samples(mal.)	EME	BER	Disa	asm.	Image
Mallmg	Nataraj et al. 2011	2011	0	25	9458	0	٥	0	٥	• •
MS BIG	Ronen et al. 2018	2015	0	9	10 868	0		•		0
EMBER	Anderson and Roth 2018	2018	0	Þ	800 000	•		0		0
UCSB	Aghakhani et al. 2020	2020	•	0	232 415	0		0		0
SOREL-20m Harang and Rudd 2020		2020	•	0	9 962 820	•		0		0
BODMAS	Yang et al. 2021	2021	•	581	57 293	•		0	٥	00
Malflow	(this)	2024	О	47	18 756		٥		٥	٥

Table 1: Public malware datasets (Yang et al. 2021).

Attila Mester, Zalán Bodó, Vinod P., Mauro Conti

Babeș–Bolyai University | University of Padua

(日) (四) (日) (日) (日)

Our contribution

- original method: generate RGB images for PE files based on disassembled call graph instruction flow
 - ignores noise from the binary
 - learns from images based solely on instruction information
- **training** CNN models: 0.88 micro F₁ on BODMAS with 57 families
- **publishing** a new dataset on Kaggle: Internal Bitdefender Dataset IBD
- publishing packer information, static call graph, images and instruction data for BODMAS, MalIMG and IBD
- **comparing** our method to the state-of-the-art EMBER features

Generating the call graph & RGB image

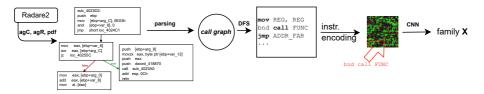
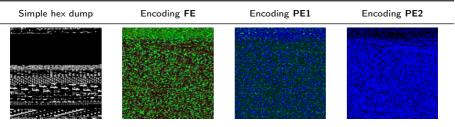


Figure 3: Pipeline of our proposed method.

- Radare2 (5.8.8 release): agCd and agRd global call and reference graphs
- each function: pdfj
- DFS on functions
- [bnd?] [prefix?] mnemonic [param1 [param2, ...]]

Example encoding



BODMAS sample 53c4c900e03eb6e94c0fe18091591904

Figure 4: Comparing different instruction encodings and simple hex dump image.

Attila Mester, Zalán Bodó, Vinod P., Mauro Conti

Towards a malware family classification model using static call graph instruction visualization

Babeș-Bolyai University | University of Padua

イロト イポト イヨト イヨ

Training CNN models

- ResNet18/50, Resnet1D, MobileNetV3, GoogleNet, EfficientNet, DenseNet
- images formats: hex dump-based grayscale images, FE, PE1, PE2 encodings
- augmentation: generating 7000 metamorphic variants with pymetangine¹

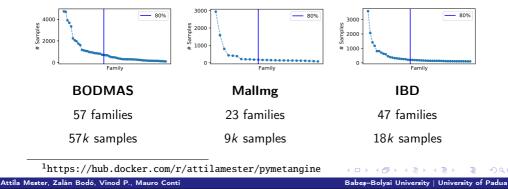
¹https://hub.docker.com/r/attilamester/pymetangine

Attila Mester, Zalán Bodó, Vinod P., Mauro Conti

A D N A B N A B N A B

Training CNN models

- ResNet18/50, Resnet1D, MobileNetV3, GoogleNet, EfficientNet, DenseNet
- images formats: hex dump-based grayscale images, FE, PE1, PE2 encodings
- augmentation: generating 7000 metamorphic variants with pymetangine¹



Introduct	ion Problem definition	Malware – Image	Training CNNs Com ○● 000	paring with EMBER	Packers and famili	es Conclusions A	.cknowledgem
Results							
_	Model	Batch	Img.	Acc.	F ₁ micro	F_1 macro	
	BODMAS, 57 fa	milies					
_	ResNet18	20	224×224	0.820	0.820	0.797	
	ResNet18	20	100 imes 100	0.887	0.887	0.859	
	ResNet50	32	100 imes 100	0.812	0.812	0.786	
	ResNet1d	20	100 imes 100	0.784	0.784	0.727	
	MobileNetV3	32	30 imes 30	0.790	0.790	0.733	
	GoogleNet	32	30 imes 30	0.790	0.790	0.731	
	EfficientNet	32	30 imes 30	0.786	0.786	0.737	
	DenseNet121	32	30 × 30	0.790	0.790	0.746	
_	BODMAS, 57 fa	milies, hex dun	np images				_
_	ResNet18	20	100 × 100	0.881	0.881	0.873	
_	Mallmg, 23 fami	lies					_
_	ResNet18	20	100 imes 100	0.722	0.744	0.737	
	ResNet18	20	30 × 30	0.761	0.761	0.749	
	IBD, 47 families						
_	ResNet18	20	100 imes 100	0.872	0.872	0.784	
	ResNet18	32	30 × 30	0.849	< 0.849 🗇 🕨	∢ ≣ ▶ 0.7776	≣
	ster, Zalán Bodó, Vinoc				Babeş–Bolyai Ur	iversity Universit	y of Padua
Transmission	(and an manual sectors	a static sell success in sta	weathing winner in the			

Comparing our method with EMBER

- motivation: measure our model's performance compared to EMBER features (Anderson and Roth 2018)
- EMBER: 2381-long feature vector: bytes, histograms, entropy, section info, strings, import-export directory info, etc.
- comparison methodology: instruction mnemonic histogram vector for each file (2019-dimensional integer vector) vs. EMBER
- **compared models**: DecisionTree, RandomForest, LinearSVC, SGD, LogReg

Towards a malware family classification model using static call graph instruction visualization

・ロト ・ 同ト ・ ヨト ・ ヨ

duction	Problem definition	Malware – Image 000000	Training CNNs	Comparing wi ○●○	th EMBER Pa		Conclusions A	Acknowl
Ν	/lodel	EMBE	R (1)	Mnem.	hist. (2)	(1) -	+ (2)	
		F ₁ m.	F ₁ M.	F ₁ m.	F ₁ Μ.	F ₁ m.	F ₁ M.	
E	30DMAS, full da	ataset – 51974	samples, 57	families				
C	DecisionTree	0.907	0.886	0.172	0.058	0.904	0.877	
F	RandomForest	0.924	0.905	0.174	0.056	0.924	0.900	
E	BODMAS, only r	non-packed sar	nples – 33 807	7 samples, 44	families			_
C	DecisionTree	0.930	0.917	0.879	0.831	0.932	0.922	
F	RandomForest	0.945	0.938	0.884	0.839	0.944	0.939	
Ν	Aallmg, full data	set – 9138 sar	mples, 23 fam	ilies				
C	DecisionTree	0.990	0.975	0.753	0.841	0.998	0.978	
F	RandomForest	0.996	0.990	0.786	0.832	0.993	0.982	
	BD, full dataset	– 18 756 samp	oles, 47 familio	es				
C	DecisionTree	0.923	0.862	0.897	0.838	0.923	0.870	
F	RandomForest	0.961	0.936	0.924	0.877	0.963	0.940	
I	BD, only non-pa	cked samples	– 16 088 samp	oles, 41 famil	ies			
C	DecisionTree	0.922	0.866	0.892	0.828	0.916	0.867	
F	RandomForest	0.960	0.938	0.918	0.866	0.961	0.941	3

Attila Mester, Zalán Bodó, Vinod P., Mauro Conti

Babeș–Bolyai University | University of Padua

Observations

- packed samples distort the model trained on the mnemonic histogram vector, but do not have so heavy effect on binary file-based features, i.e. the EMBER
- EMBER's performance originates mainly from the byte- and byte entropy histogram information

Table 2: Comparisor	between the full EMBER	vector and its subsets,	on BODMAS
---------------------	------------------------	-------------------------	-----------

Model	[02381]		[0255]		[256511]		[0	511]
	F1 m.	F1 M.	F1 m.	F ₁ M.	F1 m.	F1 M.	F₁m.	F1 M.
BODMAS, full dataset – 51 974 samples, 57 families								
DecisionTree	0.907	0.886	0.864	0.829	0.887	0.852	0.889	0.850
RandomForest	0.924	0.905	0.906	0.880	0.914	0.891	0.914	0.895

Attila Mester, Zalán Bodó, Vinod P., Mauro Conti

Babes-Bolyai University | University of Padua

イロト イポト イヨト イヨ

On correlation between packers and families

- BODMAS: 57k samples, 18k packed (33%)
- Mallmg: 9.4k samples, 1.7k packed (18%)
- IBD: 18.7k samples, 2k packed (12%)

Table 3: Cramér's V association score between family, packed status, and packer tool.

	BODMAS	Mallmg	IBD	
Malware family – Packed	0.755	0.981	0.736	
Malware family – Packer	0.547	0.590	0.525	

Attila Mester, Zalán Bodó, Vinod P., Mauro Conti

Babeș-Bolyai University | University of Padua

イロト イポト イヨト イヨ

Family – packer association

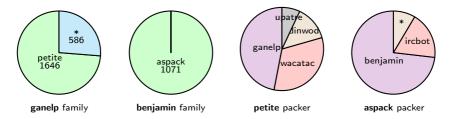


Figure 5: BODMAS: packer-family association, showing the number of samples.

Attila Mester, Zalán Bodó, Vinod P., Mauro Conti

Towards a malware family classification model using static call graph instruction visualization

Babes-Bolyai University | University of Padua

Contribution summary

- **goal**: malware family classification
- proposed model: RGB images based on call graph instructions
- CNN architectures tested, but performance did not surpass the EMBER baseline's F1 score
- discovered strong correlation between families and packers
 - causing potential overfitting
 - packed samples may mislead ML models,
 - models may learn packer traits instead of malware behavior
- published on Kaggle: disassembled call graphs, images, packer info on BODMAS, Mallmg and IBD

Towards a malware family classification model using static call graph instruction visualization

Babeș-Bolyai University | University of Padua

・ロト ・ 同ト ・ ヨト ・ ヨ

Future work

- combine instruction-based model with binary features to match/surpass
 EMBER baseline
- build explainable model on instruction images
- map malware families to instruction-level traits

Towards a malware family classification model using static call graph instruction visualization

イロト イポト イヨト イヨ

Funded by:

- Babeș-Bolyai University, Romania
- HORIZON Europe Framework Programme "OPTIMA Organization sPecific Threat Intelligence Mining and sharing" (101063107)
- Bitdefender

https://attilamester.github.io/call-graph/

Attila Mester, Zalán Bodó, Vinod P., Mauro Conti

Towards a malware family classification model using static call graph instruction visualization

Babeș–Bolyai University | University of Padua

References I

- Daniele Ucci, Leonardo Aniello, and Roberto Baldoni. "Survey of Machine Learning Techniques for Malware Analysis". In: (2018).
- [2] Attila Mester and Zalán Bodó. "Validating static call graph-based malware signatures using community detection methods". In: *Proceedings of ESANN*. 2021.
- [3] Attila Mester and Zalán Bodó. "Malware Classification Based on Graph Convolutional Neural Networks and Static Call Graph Features". In: International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems. Springer. 2022, pages 528–539.

Babeș-Bolyai University | University of Padua

References II

- [4] Lakshmanan Nataraj et al. "Malware images: visualization and automatic classification". In: *VizSec*. 2011, pages 1–7.
- [5] Zhihua Cui et al. "Detection of malicious code variants based on deep learning". In: *IEEE Transactions on Industrial Informatics* 14.7 (2018), pages 3187–3196.
- [6] Mahmoud Kalash et al. "Malware classification with deep convolutional neural networks". In: NTMS. IEEE. 2018, pages 1–5.
- M. S. Charikar. "Similarity estimation techniques from rounding algorithms". In: *STOC*. Montréal, Québec, Canada: ACM, 2002, pages 380–388.

Babeș-Bolyai University | University of Padua

References III

- [8] Sang Ni, Quan Qian, and Rui Zhang. "Malware identification using visualization images and deep learning". In: *Computers & Security* 77 (2018), pages 871–885.
- Baoguo Yuan et al. "Byte-level malware classification based on markov images and deep learning". In: Computers & Security 92 (2020), page 101740.
- [10] Huaxin Deng et al. "MCTVD: A malware classification method based on three-channel visualization and deep learning". In: *Computers & Security* 126 (2023), page 103084.

Towards a malware family classification model using static call graph instruction visualization

References IV

- [11] Limin Yang et al. "BODMAS: An Open Dataset for Learning based Temporal Analysis of PE Malware". In: SPW. May 2021, pages 78–84.
- [12] Royi Ronen et al. Microsoft malware classification challenge. arXiv preprint arXiv:1802.10135. 2018.
- [13] Hyrum S. Anderson and Phil Roth. EMBER: an open dataset for training static pe malware machine learning models. arXiv preprint arXiv:1804.04637. 2018.
- [14] Hojjat Aghakhani et al. "When Malware is Packin' Heat; Limits of Machine Learning Classifiers Based on Static Analysis Features". In: NDSS. 2020.

(日) (四) (日) (日) (日)

References V

[15] Richard Harang and Ethan M. Rudd. SOREL-20M: A large scale benchmark dataset for malicious PE detection. arXiv preprint arXiv:2012.07634. 2020.

Attila Mester, Zalán Bodó, Vinod P., Mauro Conti

Towards a malware family classification model using static call graph instruction visualization

イロト イポト イヨト イヨ